Russians Reportedly Building a Satellite-Blinding Laser—an Expert Explains the Technology - Nextgov

2022-07-30 20:42:10 By : Mr. Rex Wang

By Iain Boyd , The Conversation

Russia is building a new ground-based laser facility for interfering with satellites orbiting overhead, according to a recent report in The Space Review. The basic idea would be to dazzle the optical sensors of other nations’ spy satellites by flooding them with laser light.

Laser technology has evolved to the point where this type of anti-satellite defense is plausible, though there is limited evidence of any nation successfully testing such a laser.

If the Russian government is able to build the laser, it would be capable of shielding a large part of the country from the view of satellites with optical sensors. The technology also sets the stage for the more ominous possibility of laser weapons that can permanently disable satellites.

A laser is a device for creating a narrow beam of directed energy. The first laser was developed in 1960, and since that time, there have been several types created that use different physical mechanisms to generate photons, or particles of light.

Gas lasers pump large amounts of energy into specific molecules such as carbon dioxide. Chemical lasers are powered by specific chemical reactions that release energy. Solid-state lasers use customized crystalline materials to convert electrical energy into photons. In all lasers, the photons are subsequently amplified by passing them through a special type of material called the gain medium and then focused into a coherent beam by a beam director.

Depending on the photon intensity and wavelength, the directed beam of energy formed by a laser can create a range of effects at its target. For example, if the photons are in the visible part of the spectrum, a laser can deliver light at its target.

For a sufficiently high flow of high-energy photons, a laser can heat, vaporize, melt and even burn through the material of its target. The ability to deliver these effects is determined by the power level of the laser, the distance between the laser and its target, and the ability to focus the beam on the target.

The various effects generated by lasers find widespread applications in everyday life, including laser pointers, printers, DVD players, retinal and other medical surgery procedures, and industrial manufacturing processes such as laser welding and cutting. Researchers are developing lasers as an alternative to radio wave technology to boost communications between spacecraft and the ground.

Lasers also find widespread application in military operations. One of the best known is the Airborne Laser (ABL), which the U.S. military intended to use to shoot down ballistic missiles. ABL involved a very large, high-power laser mounted on a Boeing 747. The program was ultimately doomed by the challenges associated with the thermal management and maintenance of its chemical laser.

A more successful military application is the Large Aircraft Infrared Counter Measures (LAIRCM) system, which is used to protect aircraft from heat-seeking antiaircraft missiles. LAIRCM shines light from a solid-state laser into the missile sensor as it approaches the aircraft, causing the weapon to become dazzled and lose track of its target.

The evolving performance of solid-state lasers has led to a proliferation of new military applications. The U.S. military is mounting lasers on Army trucks and Navy ships to defend against small targets such as drones, mortar shells and other threats. The Air Force is studying the use of lasers on aircraft for defensive and offensive purposes.

The reputed new Russian laser facility is called Kalina. It is intended to dazzle, and therefore temporarily blind, the optical sensors of satellites that are collecting intelligence overhead. As with the U.S. LAIRCM, dazzling involves saturating the sensors with enough light to prevent them from functioning. Achieving this goal requires accurately delivering a sufficient amount of light into the satellite sensor. This is no easy feat given the very large distances involved and the fact that the laser beam must first pass through the Earth’s atmosphere.

Accurately pointing lasers over large distances into space is not new. For example, NASA’s Apollo 15 mission in 1971 placed meter-sized reflectors on the Moon that are targeted by lasers on Earth to provide positioning information. Delivering enough photons over large distances comes down to the laser power level and its optical system.

Kalina reportedly operates in a pulsed mode in the infrared and produces about 1,000 joules per square centimeter. By comparison, a pulsed laser used for retinal surgery is only about 1/10,000th as powerful. Kalina delivers a large fraction of the photons it generates across the large distances where satellites orbit overhead. It is able to do this because lasers form highly collimated beams, meaning the photons travel in parallel so the beam doesn’t spread out. Kalina focuses its beam using a telescope that has a diameter of several meters.

Spy satellites using optical sensors tend to operate in low-Earth orbit with an altitude of a few hundred kilometers. It generally takes these satellites a few minutes to pass over any specific point on the Earth’s surface. This requires Kalina to be able to operate continuously for that long while maintaining permanent track on the optical sensor. These functions are carried out by the telescope system.

Based on the reported details of the telescope, Kalina would be able to target an overhead satellite for hundreds of miles of its path. This would make it possible to shield a very large area – on the order of 40,000 square miles (roughly 100,000 square kilometers) – from intelligence gathering by optical sensors on satellites. Forty thousand square miles is roughly the area of the state of Kentucky.

Russia claims that in 2019 it fielded a less capable truck-mounted laser dazzling system called Peresvet. However, there is no confirmation that it has been used successfully.

Laser power levels are likely to continue to increase, making it possible to go beyond the temporary effect of dazzling to permanently damaging the imaging hardware of sensors. While laser technology development is heading in that direction, there are important policy considerations associated with using lasers in this way. Permanent destruction of a space-based sensor by a nation could be considered an act of aggression, leading to a rapid escalation of tensions.

Of even greater concern is the potential deployment of laser weapons in space. Such systems would be highly effective because the distances to targets would likely be significantly reduced, and there is no atmosphere to weaken the beam. The power levels needed for space-based lasers to cause significant damage to spacecraft would be significantly reduced in comparison to ground-based systems.

In addition, space-based lasers could be used to target any satellite by aiming lasers at propellant tanks and power systems, which, if damaged, would completely disable the spacecraft.

As technology advances continue, the use of laser weapons in space becomes more likely. The question then becomes: What are the consequences?

Iain Boyd, Professor of Aerospace Engineering Sciences, University of Colorado Boulder

This article is republished from The Conversation under a Creative Commons license. Read the original article.

NEXT STORY: Pass the CHIPS Act

Do Not Sell My Personal Information

When you visit our website, we store cookies on your browser to collect information. The information collected might relate to you, your preferences or your device, and is mostly used to make the site work as you expect it to and to provide a more personalized web experience. However, you can choose not to allow certain types of cookies, which may impact your experience of the site and the services we are able to offer. Click on the different category headings to find out more and change our default settings according to your preference. You cannot opt-out of our First Party Strictly Necessary Cookies as they are deployed in order to ensure the proper functioning of our website (such as prompting the cookie banner and remembering your settings, to log into your account, to redirect you when you log out, etc.). For more information about the First and Third Party Cookies used please follow this link.

Strictly Necessary Cookies - Always Active

We do not allow you to opt-out of our certain cookies, as they are necessary to ensure the proper functioning of our website (such as prompting our cookie banner and remembering your privacy choices) and/or to monitor site performance. These cookies are not used in a way that constitutes a “sale” of your data under the CCPA. You can set your browser to block or alert you about these cookies, but some parts of the site will not work as intended if you do so. You can usually find these settings in the Options or Preferences menu of your browser. Visit www.allaboutcookies.org to learn more.

Sale of Personal Data, Targeting & Social Media Cookies

Under the California Consumer Privacy Act, you have the right to opt-out of the sale of your personal information to third parties. These cookies collect information for analytics and to personalize your experience with targeted ads. You may exercise your right to opt out of the sale of personal information by using this toggle switch. If you opt out we will not be able to offer you personalised ads and will not hand over your personal information to any third parties. Additionally, you may contact our legal department for further clarification about your rights as a California consumer by using this Exercise My Rights link

If you have enabled privacy controls on your browser (such as a plugin), we have to take that as a valid request to opt-out. Therefore we would not be able to track your activity through the web. This may affect our ability to personalize ads according to your preferences.

Targeting cookies may be set through our site by our advertising partners. They may be used by those companies to build a profile of your interests and show you relevant adverts on other sites. They do not store directly personal information, but are based on uniquely identifying your browser and internet device. If you do not allow these cookies, you will experience less targeted advertising.

Social media cookies are set by a range of social media services that we have added to the site to enable you to share our content with your friends and networks. They are capable of tracking your browser across other sites and building up a profile of your interests. This may impact the content and messages you see on other websites you visit. If you do not allow these cookies you may not be able to use or see these sharing tools.

If you want to opt out of all of our lead reports and lists, please submit a privacy request at our Do Not Sell page. Save Settings

A cookie is a small piece of data (text file) that a website – when visited by a user – asks your browser to store on your device in order to remember information about you, such as your language preference or login information. Those cookies are set by us and called first-party cookies. We also use third-party cookies – which are cookies from a domain different than the domain of the website you are visiting – for our advertising and marketing efforts. More specifically, we use cookies and other tracking technologies for the following purposes:

We do not allow you to opt-out of our certain cookies, as they are necessary to ensure the proper functioning of our website (such as prompting our cookie banner and remembering your privacy choices) and/or to monitor site performance. These cookies are not used in a way that constitutes a “sale” of your data under the CCPA. You can set your browser to block or alert you about these cookies, but some parts of the site will not work as intended if you do so. You can usually find these settings in the Options or Preferences menu of your browser. Visit www.allaboutcookies.org to learn more.

We do not allow you to opt-out of our certain cookies, as they are necessary to ensure the proper functioning of our website (such as prompting our cookie banner and remembering your privacy choices) and/or to monitor site performance. These cookies are not used in a way that constitutes a “sale” of your data under the CCPA. You can set your browser to block or alert you about these cookies, but some parts of the site will not work as intended if you do so. You can usually find these settings in the Options or Preferences menu of your browser. Visit www.allaboutcookies.org to learn more.

We do not allow you to opt-out of our certain cookies, as they are necessary to ensure the proper functioning of our website (such as prompting our cookie banner and remembering your privacy choices) and/or to monitor site performance. These cookies are not used in a way that constitutes a “sale” of your data under the CCPA. You can set your browser to block or alert you about these cookies, but some parts of the site will not work as intended if you do so. You can usually find these settings in the Options or Preferences menu of your browser. Visit www.allaboutcookies.org to learn more.

We also use cookies to personalize your experience on our websites, including by determining the most relevant content and advertisements to show you, and to monitor site traffic and performance, so that we may improve our websites and your experience. You may opt out of our use of such cookies (and the associated “sale” of your Personal Information) by using this toggle switch. You will still see some advertising, regardless of your selection. Because we do not track you across different devices, browsers and GEMG properties, your selection will take effect only on this browser, this device and this website.

We also use cookies to personalize your experience on our websites, including by determining the most relevant content and advertisements to show you, and to monitor site traffic and performance, so that we may improve our websites and your experience. You may opt out of our use of such cookies (and the associated “sale” of your Personal Information) by using this toggle switch. You will still see some advertising, regardless of your selection. Because we do not track you across different devices, browsers and GEMG properties, your selection will take effect only on this browser, this device and this website.

We also use cookies to personalize your experience on our websites, including by determining the most relevant content and advertisements to show you, and to monitor site traffic and performance, so that we may improve our websites and your experience. You may opt out of our use of such cookies (and the associated “sale” of your Personal Information) by using this toggle switch. You will still see some advertising, regardless of your selection. Because we do not track you across different devices, browsers and GEMG properties, your selection will take effect only on this browser, this device and this website.

Help us tailor content specifically for you:

>Top